Rafael Valle a72160b8cb | 6 years ago | |
---|---|---|
filelists | 6 years ago | |
text | 6 years ago | |
Dockerfile | 6 years ago | |
LICENSE | 6 years ago | |
README.md | 6 years ago | |
audio_processing.py | 6 years ago | |
data_utils.py | 6 years ago | |
distributed.py | 6 years ago | |
fp16_optimizer.py | 6 years ago | |
hparams.py | 6 years ago | |
inference.ipynb | 6 years ago | |
layers.py | 6 years ago | |
logger.py | 6 years ago | |
loss_function.py | 6 years ago | |
loss_scaler.py | 6 years ago | |
model.py | 6 years ago | |
multiproc.py | 6 years ago | |
plotting_utils.py | 6 years ago | |
requirements.txt | 6 years ago | |
stft.py | 6 years ago | |
tensorboard.png | 6 years ago | |
train.py | 6 years ago | |
utils.py | 6 years ago |
Tacotron 2 PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions.
This implementation includes distributed and fp16 support and uses the LJSpeech dataset.
Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's Apex Library.
git clone https://github.com/NVIDIA/tacotron2.git
cd tacotron2
sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt
pip install requirements.txt
(tbd)
python train.py --output_directory=outdir --log_directory=logdir
tensorboard --logdir=outdir/logdir
python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True
jupyter notebook --ip=127.0.0.1 --port=31337
nv-wavenet: Faster than real-time wavenet inference
This implementation uses code from the following repos: Keith Ito, Prem Seetharaman as described in our code.
We are inspired by Ryuchi Yamamoto's Tacotron PyTorch implementation.
We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan Wang and Zongheng Yang.